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A. A Spectrometer for Simultaneous Observation spin energy level schemes and on relaxation phenomenon.

of the Spectra of Two Nuclei of Different It is possible to realize some of the advantages of the ideal
spectrometer mentioned above in simple field-sweep

MagnetoEp/ric Ratios, D. D. Elleman, doeble-resonance experiments without the extra compli- :
S. t. Manatt, and C. D. Pearce cation .)f nuclear field stabilization.The requisitecorn-

To performfield-sweepheteronucleardouble-resonance p,,n_i4s and modificationsto perform such experiments
experiments, one must consider the difference in r '1rive are: f L) two Varian 4311 BF units of the appropriate fre-
sweep distances (as measured in field units) introduced quen_ies, (2) frequency synchronization between the two _
by the difference of gyromagnetic ratios of the sets of BF units, (3) double tuning of the Varian 4331A probe
nuclei being studied. Simultaneous observation of the two transmitter circuit, (4) double tuning of the Varian
nuclei would greatly facilitate this type of experiment 4331A probe receiver circuit, and (5)a convenient means
(SPS 37-41, Vol. IV, pp. 180, 181). We describe herein for si,mltaneously displaying the two nuclear signals
some modifications to our standard nuclear magnetic whe_, he field is swept.
resonance (NMB) probes that make this technique
feasible. The basis of our system is a Varian HB-60. In one dis-

position, the Varian 4311 units were at frequencies of 24.3,
Ideally, a heteronuclear double-resonance experiment 56.4, and 60.0 Me for a number of 8,p., ,sF. ' and *H-

requires a multiple-frequency synthesizer spectrometer containing molecules which we have been studying. The
with nuclear field stabilization. Therefore, a single spectral master oscillator crystals were removed from these units
line can be continuously observed while one or more an(, replaced by two Hewlett-Packarcl 510(O freq: er,cy
types of nuclei in the sample molecule are irradiated by synthesizers. The synthesizers were driven from the same
changing the other relevant frequencies. Experiments of Hm_,lett-Packard 5100A driver unit. The receiver cir-
this type, previously referred to as INDOR (Bef. 1) ex- cult of a 60-Mc Varian 4331A probe was modified as
periments, can give significant information on the nuclear- shown in Fig. l(a_ so as to give a good signal-to-noise
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(o) RECEIVERCIRCUIT IO/J.h 15-7pf about h)ur to five times more turns of wire than 60-Me

_" L I r'-"_ )(LT210pf inserts. The transmitter circuit of the 60-Me probe was.... T O60-OR 5G4-MHz modified as shown ill Fig. l(b) so as to resonate at 24.3

O.8/_._ flS-bOp, (_ R A 'TO 243-MHz y P E MPLIFIER and eitlaer 56.4 or 60 Mc. The additional probe components

_D!,., J. "_" PREAMPLIRER/ were housed in two aluminum boxes attached to the probe
RECEIVERCOIL24 3-MHz INSERT (Fig. 2). To obtain more RF power in certain decoupling

experiments, the output of either Varian 4311 unit was
(b) TRANSMITTER CIRCUIT

coupled to a Boonton 230A power amplifier, whose output60-MHz TRAP
0.5/_h was fed to the probe transmitter circuit. Usually, in simple

field-sweep ex-periments, it was possible to record spectra
J + ' -I _ directly from the output of the Varian 4311 I_.F phase8-50 pf 8- Opf 30 pf detectors; however, for certain experiments it was neces-

095 - ''_ • _-_60-OR 56.4- _!_.... 1 ,-'-, 243-MHz
- p.,l_ _ MHZ INPUT ,_=.o-t prT------ _ INPUT sary to lock the field through a synchronous detector

180 pf 210 of locked on tile tetramethylsilane proton line.

TRANSMITTER COIL 60-MHz PROBE -

Some simultaneously recorded "P and 'H spectra of tri-Fig. I. Receiver and transmitter circuits of Varian 4331A

probe modified for dual-frequency operation methylphosphite, (CH:,O),P, are shown in Fig. 3(a,b,c).
Positive and negative signal enhancements of greater than

10 are evident in Fig. 3( b ) and 3(c), respectively. In Fig.

value for 24.3 Mc and a somewhat smaller signal-to-noise 3(d ), the "P frequency-sweep spectrum of this compound
value at 56.4 Mc and 60.0 Me. We estimate that the signal- was recorded while the field was locked on a tetramethyl-

, to-noise value at 24.3 Mc was down a factor of only 2 to 3 silane line and one of the proton lines was irradiated with

from that of a standard 24.3-Mc probe. A 24.3-Mc receiver an audio modulation appropriate to give the most pro-
insert was used in the 60-Me probe so some of the signal- nounced intensity perturbations of the least intense lines.

to-noise loss at the proton and fluorine frequencies was These are barely visible in Fig. 3(a). The 3_p center-band

gained back from the lower frequency insert, which has frequency was swept by feeding a negative ramp from a



(o) NORMAL FIELD-SWEEP IH AND 3Jp SPECTRA (c) SAME AS (L), EXCEPT IH FREQUENCY IS DIFFERENT

IH IH

(14,996,801.65 X4 Mc) (14,996,803.50 X 4 Mc)

31p 31p

16,071,660.0:< 4 Mc) / 16,071,660.0X4 Mc)

FIELD _ FIELD -.--D.

(b) SAME AS (o), EXCEPT IH POWER IS 22db HIGHER (d) FREQ4.'ENCY-SWEEP 31p SPECTRUM WHEN SPECTROMETER IS
LOCKED ON TETRAMETHYLSILANE LINE AND HIGH-FIELD
MEMBER OF IH DOUBLET OF (CH30)3P IS IRRADIATED WITH
AN AUDIO FIELD MODULATION

IH

(14,996, 801.65 X4 MC) ._

31p
(6,071,660.0X4 MC)

FIELD...--IP FIELD._,I_
i

Fig. 3. NMR spectra of (CHs0)aP(neat) |
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(O) NORMAL FIELD-SWEEP SPECTRUM (b) PROTONS FIELD-SWEEP DECOUPLED (c) SAME AS (b), EXCEPT GAIN IS TEN
SPECTRUM TIMES HIGHER

Jlsc.Sl P _ 13.97 Hz _"

FIELD _ FIELD

i
Fig. 4. "P spectra of (CHsIsP (neat)

m
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motor-driven 10-turn pot to the search oscillator of the as tests for Eq. (1). The diatomic molecules, O., and N_,
appropriate frequency synthesizer. On completely de- have two distinct polarizabilities: a,, along the interuuclear
coupling the protons in trimethylphosphite, the 31psignal axis, and ai normal to the axis. CH_ has an isotropic
intensity increased by a factor of 1.5 from that expected polarizability, and its behavior on the surface should be
for just collapse of the multiplet structure of Fig. 3(a). similar to that of a rare gas (e.g., Ar). When O_ and Nz

are freely rotating, the effective polarizability is an aver-
Fig. 4(a) shows the field-sweep :'P spectrum of tri- age of a, and a_and is defined as (Ref. 3, p. 949).

methylphosphine, (CH:,),P; Fig. 4(b) shows the field- 1

_weep completely decoupled spectrum. Note the two a,v =-_(a, + 2a_) (2)
weak signals on either side of the main signal. Fig. 4(c)
shows the same region at higher gain. The doublet struc-

1

ture we ascribe to a directly bonded I'_C-'_P coupling of The polarizabilities of the permanent gases are given
- 13.97 _--+-0.04 Hz. This assignment is based on two facts: below, where the molecular diameter _ is included to :.

At progressively lowel levels of _H irradiation, the doublet show that the molecules are of comparable sizes:
signals broaden and finally disappear, even though the
protons in the molecules (_zCH:,):/1P are still completely
decoupled. Furthermore, the doublet is not centered about

Item Ar O_ N., CH_
the decoupled :_'P signals from the (_CH_):_31P species
because of a 3_pisotopic chemical shift of 0.98 _+0.04 Hz a,, A"_ 1.63 2.35 2.38 2.60

of the (1'_CH:_)(12CH.0_Pspecies. The negative sign is at, As 1.63 1.21 1.45 2.60
given this I_C--'_IPcoupling relative to the _3C-H coupling a,_, Aa 1.63 1.60 1.76 2.60

, because, if the _H frequency is increased some 40 Hz,
it is observed in field-sweep spectra that the high-field o, A 3.40 3.47 3.70 3.82
line becomes slightly sharpened and the low-field line
becomes significantly broadened. The reverse effect is
observed when the _H frequency is decreased. If Eq. (1) does represent the major attractive force,

then O, and N._, when freely rotating on the surface,
should behave like Ar since their effective polarizabilities

B. Low-Temperature Chromatographic Separation are similar. Conversely, if their rotational motion is hin-

of Some Permanent Gases, J. King, Jr. dered, their behavior should deviate from that of Ar.
Since N_has a large quadrupole moment ( Ref. 3, p. 1028),

1. Introduction its rotational motion should be affected in a strong electric t

The permanent gases argon (Ar), oxygen (O2), nitro- field. The electric-field quadrupole interaction will tend
gen (N2), and methane (CH,)have been separated on an to align the molecule's internuclear axis with the field.
alumina (A120:,) column at low temperatures. These O.o, whose quadrupole moment is rather small (Ref. 3,
gases were chosen to obtain experimental evidence in p. 1028), should be less affected. Under conditions where
support of the electrostatic theory of physical adsorption the interaction is so strong that Nz ceases to rotate, its
(Ref. 2). The fact that they must also be included in any behavior on the surface should approach that of CH,.
chromatographic atmospheric analysis gives added ira- To observe these effects, the experiments were performed
petus to the investigations, at low temperatures, where the molecules have less

kinetic energy.
In the electrostatic theory, the dominant attractive

energy between the gases and the surface was proposed 2. Experimental
to be (Ref. 2) Some innovations were made in the ordinary gas

chromatography setup. Since the activity of the AI,O__ 2
el)it t -_EZ. (I) had to be closely controlled, it was necessary to have

ultra-dry carrier gas. Any water, even in trace quantities,
greatly reduces the activity. Therefore, to eliminate all

where a is the polarizability of the adsorbed gas, and E, traces of water, the carrier gas was passed through a
is the electric-field intensity normal to the surface. There molecular sieve trap at liquid-nitrogen temperature prior
is a unique relationship between the molecular polariza- to sample injection. Temperature variation and control
bilities of the chosen gases which allows them to be used were obtained by automatically maintaining an Isopentane
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t V
HELIUM
SUPPLY MOLECULAR LOW- LIQU!0-

I SIEVE TRAP TEMPERATURE NIT,_C,GEN
0U_.T. GAS SAMPLE SUPPLY TEMPERATURE

I AT LIQUID- CHROMATOGRAPH_ INLET BATH W_TH CONTROLLERNITROGEN AIr03

i TEMPERATURE COLUMN
I

Fig. 5. Block diagram of experimental apparatus

tO I ......

J j ;, .__ / j
, - //
./// }", s
.. x_ /.j."A/ 0- iJ "
.i - /.¢
=.= 4_ 4J =o u _ u 7_ u 4.0 4J s.o 5.s =.o ,., 7.o

_=Ir,'K _P/r. .K

Fill, 6. Chromatographic separations on AltO, column activated at both 350 and 9000C for 100 hr
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bath at the desired temperature. The isopcntane was con- The resulting straight lines in Fig. 6 are indicative of
tained in a low-temperature dewar. Inside the dewar was linear adsorption isotherms _nd allow comparisons to be
a large copper cylinder with copper tubing wound on its made between the two conditions. Nitrogen is seen to
outside. The tubing was connected to a liquid-nitrogen behave quite differently on the two columns. On tbe
source, which was controlled by a sensing element im- highly active cohmm (heated to 900cC), the retention of
mersed in the isopentane and an automatic temperature N. approaches that of CH, at low temperatures; on the
controller. Magnetic stirring was obtained by use .of a less active column, the difference in the retention times
small propeller attached to the bottom of the copper of N..and CH, is approximately constant, and the retention
cyhnder and a rotating magnet outside of the dewar. A time of N. approaches that of O: and Ar at the high
block diagram of the experimental set,ip is shown in Fig. 5. temperatures.

The column was made by coiling 8 ft of quartz tubing The observed behavior supports the basic assumptions
to fit into the low-temperature dewar. The column was of the electrostatic theory, of physical adsorption. The
packed with Alcon Type F-1 activated AI_O, (.--+150 data also suggest the existence c_"at least two distinct
mesh) by applying compressed air at the inlet and a adsorption sites on the AI_(), surf',.:e. On the material
vacuum at the outlet and vibrating the column by means heated to 350°C, water blocked the most active surface
of a drill motor. The weight of the material in the column sites, and the quadrupole-field interaction was not strong
was 70.2 g. enough to perceptively hinder the rotation of N_. How-

ever, when the material is heated to ,q00°C, water is driven

The experimental procedure consisted of: (1) activating from the most active sites, and the fields over these sites
the column at 350°C for 100 hr in a tubular heater, are strong enough to orientate N_ with its axis perpen-

(2) placing the column in the low-temperature bath, (3) dicular to the surface. The existence of these sites on the
• performing the separations over the temperature range AI_.O, surface had been previously suggested (Ref. 2).

(4) replacing the column in the heater and activating at
900°C for 100 hr, and (5) repeating the separations over 4. Conclusion
the temperature range with the newly activated column.
All of these functions were performed without discon- The results of the chromatographic separations of Ar,
tinuing the flow of the helium carrier gas through the ()_, N_.,and CH, have been used to support, at least qual-
column. The same flow rate was maintained at each tern- itatively, some of the assumptions of the electrostatic

perature by using a flow regulator and systematically theory of physical adsorption. A quantitative treatment of
readjusting the flow when it deviated by more than lg the data is under way to obtain information about bar-
from 100 cm+/min, riers to rotation, molecular orientation on the surface, and

the distances of the adsorbed molecules from the AI_O,
surface.

3. Resultsand Discussion

A semi-log plot of the retention times, tR, of the gases C. An Explanation of the Gibbs' Phenomenon,
as a function of the reciprocal temperature is presented A4.A4.Sot4r_n
in Fig. 6. The times plotted have been corrected for tem-
perature and pressure effects, as well as for the dead The Gibbs' phenomenon is discussed in nearly every

text on mathematical physics and on Fourier series. The
space in the column. The latter quantity is obtained by phenomenon occurs when one attempts to represent a
passing through the column some gas, e.g., neon (Ne), function that has a iump discontinuity by a Fourier series;
which is not adsorbed on the column. Thus (Ref. 4 ), the series representation "overshoots" the actual function

in the neighborhood of the discontinuity. In this article

3 T (P_/P,)' - 1 the Gibbs' phenomenon is shown to be a consequence of
tS = _" (rob. -- t._.) To(P,/P.p 1 (3) two well-known facts: (1) The ordinary eigenfunctions

of a linear differential operator form a complete set, and
(2) the "tom" or discontinuous eigenfunctiom have lower

where to_. is the observed time; ts., is the time it took Ne eigenvalues than do the ordinary eigenfunctior', The
to traverse the column; T is the column temperature; To latter fact is supported by the common observation that
is room temperature; and P_and P. are ff.e inlet and outlet a wine glass "tings" at a lower frequency when it is
pressures, respectively, cracked.
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Consider now the eigenwdue prol)h,m defined by the As we will show later
functional of ¢ (r)

E (_,, - 4',0_: 0 (5)
- SdT[IV_I: + V(,)I_I:']

E(ff) j.d, iq_l_ (1)
If we assume V (r) has an upper bound, then, using Eq. (4),
we can show

with the region of integration within some fnite closed
surface. On this surfac,,, ¢ (r) is required to satisfy speci- )"dr V (r) Iq',, - _,, I" =--0
fled boundary conditions. The eigenfunctions are defined

q as tile functions ¢,, that are the extrema of Eq. (1). The Thus, we conclude from Eq. (5) that
ordinary eigenfimctions art. the extrema sought among

the. class of c_mtinuous functions. The "torn" eig,'nfimc- J"dr ] V (e_,,- _,,)]= ,_ 0 (6)
tions are the extrema with respect to a different class of
f, nctions. A functio, of this class is discontinuous on

some surface which divides the original region in two, If we define
but is continuous elsewhere. As is well-known, the torn
eigenfunctions have derivatives which vanish at the jump [_'o]_-_=_ C_ _k (7)
surface when taken normal to the surface. As has already _ "
been mentioned, the nth torn eigenfunction has an eigen-
_alue lower than that of the nth ordinary eigenfunction, then Eq. (5) shows

!ans (_,,- [_,],) -, o (8)
\" The set of ordinary eigenfunctions, _,,,,is complete; i.e., __.®

if ff is a function that obeys the same restrictions as
(namely, that it is a continuous function obeying the same

and Eq. (6) shows
boundary conditions as if), then

,'.! limf drlV (_o- [_'o].)l'_O (9)
n--e_

S(4,)= J'd,I,/,i"-- _lC, I= (2)
Ill - t)

Thus, while the sequence [_,,],. n = 0, 1,''', 00, con-
verges to if,, in the mean-square, it cannot converge to _,,

m

d;(_) = E (_) S (_k)= _ X, [C, I" (3) point-by-point because of Eq. (6). To see this, let us
.=o suppose that [_,,]. converges to a con*/nuous function

[_,,].. = $� �But,if this is true. then

t Here, C, denotes .fd_._'., and x,, is the eigenvahe of _,

i (Ref. 5). Though the proof is not included here, it is not V ([_'o]0, - Ø(t0 (10)
difficult to show that, even if �iscontinuous except at
a surface where it jumps, Eq. (9.) is true. (The proof is
similar to that on p. 157 of Bd. 5.) Thus, if and Eq. (6) cannot be true. Thus, [_,,]. cannot converge

to _ everywhew, and, if it does converge everywhere, it
cannot converge to a continuous function everywhere.

_'--Zc,¢,
F_,q.(5), used in this argument, will now be shown to

he true.Weevaluatethen

S(_ -'_) = 0 O) _;( �[_.k) (n)

Therdore, the two functions �and_ are the same in the as a sum of two integrals, each integral being taken on
mean-square. Now, suppose that �isa torn ei_ each side d the jump suflace d _. The integratioa is

with the elgenvalue p_ and _ Is the lowest _pnvadue. _ by parts, and the resulting sudace integnds
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vanish si ,ce the normal derivatives of 4,. vanish on the We can now demonstrate that any torn function
jump surface. We find manifests a Gibbs' phenomenon. All we need show is that

,_(4).- [_,,].)= _,,s(_o)- _os(4,0.[_,,].) 6 (_)> 6 (_) _21)
-_,,,s([g,]..4),)+6 ([_,,1.) (121

The remaining steps are the same as those in the demon-

S (_, 4))_ J"dr C 4, stration that 4),,manifests a Gibbs' phenomenon To prove ,
Eq. (21), we expand ff in the torn eigenfimctions appro-
pria.e to th_ tea: m ¢/. We denote the expansion up to

which can be written as the ntb. torn cizenfunction as [_].. It is well-known that
?_(_) = c'_(C Since we hay-, shown above that, for any

t_,,S(4,. - [_'o].) + 6 ([_,,].) - tL,,S([4,0].) (13) torn elgc:Junction,

If we note that _ (_") > 4' _4,.) (22)

([_,,].) > X,,S([_,,].) (14) clearly then this is also true for any linear combination of
the torn eigenfimctions. Thus,

we see that

6 ([[¢1.]_)> _ ([_.) (23)
lim _ (4,0- [_".].) > (_.o- _,,,)limS ([_,,].) > O (15)

and 5o

, The next step is to show that any torn eigenfunction _ "g
4,., yields a Gibbs' phenomenon. To show this, we con- 9([_]k) > _c:(_) (24)
sider the function

But. :t is easy to show that

,L,= 4,.- 2 _4,.1_.)¢. (16)

This function is 4,,. orthogonalized to all _. with cigen-
values less than t_.... If we now evaluate The:.dore, since C (if) = c: (_, we have what we set out

to prove:
s_p

_3(¢)> _ (¢) (26)([4,.1_- g.) (17)
4

we find that In this article, we have shown that the Gibbs' ph_ .dine-
non is a result of trying to expand a mode of low fre-
quency (or energy) in a linear combination of modes, each

d3([ @(t���-_,,) = _ (t_'.]k - 4,.) having a higher frequency (or energy) than the mode we

= d3([_'.]D - _.S ([_'.]_, 4,.) (18) are attempting to represent. This is most clear when the
mode is the lowest torn eigenfunction, which has a fre-
quency lowe: than any ordimh-y mode, The Gibbs'

However, it is clear that phenomenon is a h. aifestation of how the expansion at-.
.., commodates two conflicting requirements: (1) that the

([_.]_) > _,.S ([_'.]k) (19) expansion for the torn mode converge in the mean-.u:lnare
to the torn mode itself, and (2) that the expansion have

But, since X. > _., we finally see that a higher mean frequency than the mode it repre_nts. The
accommodation is a-.hleved by the expansion developing

d_([_t.]t - „0 (_0) a discontinuity whkh leads to a discontinuous gradient.
It is this dlseontir, tflty in gradient that keeps the mean
ftequen_d theexp.a_,a higherthanthe hequem,_d

As demonstrated above, this is all we need to show that the mode it _u, while dmultaneoudy allowing the
a [unction, here 4�˜�exhibitsa Gibbs' phenomenon, expansion to converge to this mode in the mean-_lUare.
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°,evs,C..,seShwrzchS.he.1l: IH. D. Wahlquist and F. B. Estabrook !SCHWARZSCHILD

INTERIOR _Tr
I. Introdur.tion p(r, f); p =p$ SCHWARZSCHILD

" ' l ' ' EXTERIOR

The interior Sch_, arzsehild solution describing a static I[ i ] #--O; p=O

(rigid, non-rotating) sphere of perfect fluid at constant _"---Xz

density is the simplest analytic metric known for a finite t /_, //I I I I j---TRIPLE POINTIr=rm, t =O)

gravitating body. It has not usually been noted that the l-/_.__ _[_. -I

field equations allow an arbitrary function of time to be _"

introduced into this metric without destroying the prop- Zt

erties of simplicity, rigidity, and constant density, but 4_ \]I/\ I R- [_resulting in a time-dependent pressure field (see, however, OPPENHEIMET\ \ ', SNYDER 1 \ \ \

Ref. 6). Vfe have exploited this time-dependence to con- _=o; r(.) _ _ _
/ \ \ I o o r. t) _ \ \ WORLD LINES

struct idealized models of sphe,Scally symmetric, non- // ' '" " ._c_./ (,=CONSTANr)

static processes, such as accretion or relativistic collapse L--X _ \ \_ _\
onto a central body. The models are of sufficient simplicity 3

to permit an exact al,alytical solution of the entire gravi- / I \ \ \ \ \\ \\

tational problem, making comparison of the predictions R
of general relativity with Newtonian and post-Newtonian

Fig. 7. Contraction of dust cloud totheory for the dynamics of the models unambiguous, even
in extreme relativistic regimes. Schwarzschild sphere

The complete solutions are obtained by piecing together to the interior state of variable pressure and constant
three different, well-known, space--time metrics across density p,. Some other possible mosaics of these metrics

surfaces of discontinuity. All junction conditions required are shown in Fig. 8; their analytical descriptions can also

by the Lichnerowicz postulate of admissible coordinates be constructed using the dyadic methods.
(Ref. 7) are satisfied. The metrics, however, are expressed
in "non-admisslble" comoving coordinates, and the fitting

is actually accomplished using these coordinates and the The general dyadic equations for timelike congruences

tetrad or dyadic formulation of the junction conditions." (Refs. 9 and 10) are specialized for the present case by
imposing several conditions. The matter is to be non-
rotating (_ = 0), and we shall adopt non-rotating axes

The three metrics employed are: (I) the interior (co = 0). Spherical symmetry is imposed by representing
Schwarzschild with constant density p, but time-
dependent l_,,:ssure, (II) the Oppenheimer--Snyder solu- the only distinguished spatial direction at every point with

Uons (Ref. 8) for the spherically symmetric motion of a unit, radial, 3-vector _ and expressing all vectors and
dyadics in terms of it. The remaining kinematical variables

incoherent matter, and (III) the exterior Schwarzschfld. of the matter then take the forms
Fig. 7 is a schematic space--time diagram of the simplest

combination of these. It represents a contracting spherical

dust cloud (region II, outer boundary y-_) which is con- a = a_
densing and accreting on the surface X:_of a gro_Sng

Schwarzschild sphere (region I, below dashed line) to S = 301 + o(I- 3_) (1)
build the final configuration, a static Schwarzschild sphere

of radius r., (region I, above dashed line, boundary X=).

On X,,,,the matter undergoes a phase transformation from where a is the absolute acceleration, 0 is the expansion,

the incoherent state of zero pressure and varying density and o is the shear. Similarly, the electric and magnetic

components of the Weyl tensor, represented by two syrn-_Apaper on this subject, including a more detailed derivation of
results than that presented here, has been accepted for publication metric traceless dyadics, must have the forms (
in The Physical Review.

'Estabrook, F. B., and Wahlquist, H. O., Tetrad Fommlatton of A = ,-(I- 3_)

Junction Conditions in General Relativity (in press);d, SPS 37-41, I (2)vogw.p. a (, - 3Cl)

260 JPL SPACE PROGRAMS SUMMARY 37.44, VOL. IV

m

1967019812-271



(o)CONTRACTING OR (b)ACCRETION OR PARTIAL physically preferred timelike congruence, we adopt the

EXPLODINGSHELL EXPLOSION timelike isometry for our reference frame so that, in addi-
tion to p = e = 0, we have 0 = o = O, .,,ld all time deriv-

11, i ativesvanish.

lil o 1
If we now introduce comoving spatial coordinates

(r, ¢, x), the spherical metric can be written in the form

1
dt-"+ 1 dr'-' + R-'(d_-' + sin-"¢,dx_) (4)t , ds'-' - @_,

___\ where R denotes the usual radial curvature coord,:nate
and @,8, and R are functions of r and t only. Inserting the
appropriate assumptions, the dyadic differential equations

R R can be solved for the metric coefficients @, 8, and R for
each of the three regions. In region I, the solution is unique

(c)MULTIPLEBURSTSOF Ca)COLLAPSETOSMALLER Up to an arbitrary function of time only, F (t); in region II,
ACCRETION OR SCH_ZSCHILD SPHEIqE
EXPLOSION (SUPERNOVA PROCESS) three arbitrary functions of r only, f (r), g(r), and h tr),

remain; in region III, the solution is unique.

Having obtained the metrics and physical quantities
'_ I It

" [] I_ _ [] for each region expressed in terms of intrinsic comoving
,, coordinates, the remaining task is to join them together

II ii _, properly at the three surfaces of discontinuity _, _.,,

and _.,. Thl: problem is usually formulated theoretically
t t in terms of admissible coordinates (Ref. 7), for which the

Illlt metrictensoritselfanditsfirstderivativesareeverywhere

," continuous. When such coordinates can be discovered,

the matching problem is quite simple. In gene,'vl, of

i/'1/ ///11/ course, the comoving coordinates used here will not sat-
isfy the requirements of admissibility. To proceed, how-

R R ever, by searching for a set of admissible coordinates

Fig.8. Otherprocessesemployingthe same valid for all three regions leads to considerable diffleul-
metrics as Fig. 7 ties. Not the least of these difficulties arise from the facts

that the metrics of regions I and II are not explicit, but

It can be shown from the equations that, in fact, in the involve several functions as yet arbitrary, and that the
present case/3 = O. Finally, for a comoving frame of ref- forms of the boundary surfaces themselves are not yet
erenee, the momentum density vanishes (t = 0), while the completely specified. In practice, this problem can be
remaining components of the Einstein teasor will include handled in a quite straightforward manner by turning
the local proper energy density e and the stress dyadic to a tetrad or dyadic formulation of the junction condi-
for a perfect fluid tions which can be specially adapted to the matching

of metrics expressed in comoving coordinates. The gen-
T = -pl (3) oral formalism of this approach has been developed (see

Footnote 2), and it has been shown that the continuity
Eacl-, of the three regions used in these models is char- conditions used below are equivalent to, and in fact guar-

aeterized by different further specializations. In region I, antee, the existence of admissible coordinates without
we want to describe a rigid/tuid with constant density explicitly employing them.
(0 = _ = _ = p' = 0), and, since the space--time of the
interior Schwarzschild solution is conformally fiat, we also When the 29 general dyadic junction conditions of the
have a = 0. For the incoherent matter of region II, we general formalism for motion normal to spatial bound-
put p = a = 0. In region III, which being empty offers no aries are written for spherical symmetry and eomoving
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"_1_ frames ot reference, the following set of 7 continuity two parameters p_ and r,_, we obtain a unique solution
conditions results: for a model of the type depicted in Fig. 7. Tim physical

significance of this is perhaps most clearly seen by inter-

cot ¢ (5a_ preting the functions as: (1) the amount of matter cross-R ' ing E:,and accreting lit region I per unit time, and (2) the
velocity of impact of this matter at E_. Since we impose
no thermodynamic constraints at E., other than the local

.¢I,/ + v(lO+ a)l (5b) conservation of energy-momentum given bythe Rankine-Hugoniot relationships, both of these quantities can be
specified. Recalling the definition of the velocities appear-

[ 1 ] ing in the junction conditions, the two quantities can be7 r_ + _-0 + a (5c) written as p.vx and

-/[_,-',,v' + 7_;,+ a +v (10-2_)] (Sd) (vt--vll)/(1 -- vlvii),

respectively: so, it is convenient to adopt as arbitrary
7% (p + p) (5e) functions the two velocities

[v p+ p] (5f) . v, (6)

1 the velocity of the surface of the growing sphere, and
'. _ p + a (5g)

- (7)v(r)-- 1 --Each of these expressions must be continuous across the
boundary. The quantity v is the proper, radial 3-velocity

of the moving spherical 2-surface, as observed from the velocity of impact of the dust, both relative to the
the comoving frame of reference on each side, and static matter of region I.
r = (1 - v_)-'_. We assume throughout that the angular
coordinates _ and × are propagated continuously across
all boundaries, so the first expression simply requires that 2. Metricsof Fig. 7
R also be everywhere continuous. Conditions (5a)--(5d) We shall now present a summary of the metrics and
ensure that the intrinsic first and second fundamental physical quantities for the type of models depicted in
forms of the boundary are unique. Conditions (5e) and Fig. 7. The solutions are specified by the two velocity
(5f) are the usual relativistic Rankine-Hugoniot relation- functions u(r) and v (r) on Z,_,which are arbitrary to
ships in a symmetric form, and Condition (5g) requires within some broad constraints discussed later, and it is
continuity of a certain combination of curvature compo- convenient to define
nents involving both Einstein and Weyl tensors.

u., =u (r,,,), v,,,= v(r.,) (8)
These conditions are now applied to each of the three

surfaces of discontinuity to determine the arbitrary hmc. The equations as written are equally valid for either con-
tions F (t), [(r), g(r), and h (r). However, when corn- traeting or expanding models.
pleted, we find that we are still left with two functions
of r on the boundary _s which remain arbitrary. In other The spae_time metrics and physical quantities in the
words, for each choice of two such functions and the three regions of Fig. 7 are as follows:

Region I.

--- 1 [3F(t,) - (1 -9.--ffp.r_) ½]' [1 - -.ffp.r']2 -_dr_ + r2dfl' (9)ds'= 4 d_ +
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with

2 \'J,rl:.u(r)v(_71 t,<0 1

F(t,)= 1--3-P,r" ) [l_3u(r)v(r)j I ,,,,.
': "_,, (10)

2 , Va: 1 - _-p,r_) , t_>0

The inequalities here would rever:e for an expanding motion. The function of r in the first expression, 3r F is con-
verted to a function of tt by means of the equation of the boundary Z_:

'" [1 - 3u (x) v (x)]

t, ......... i-----?,ax (11)
u(x)[1- ffp.x-]

Letting d_ represent an interva.' on the surface _._,we find

d_ : - (1 - u2) dr2 + r_d_F (12)

-3-o'r )u_(1 - 2

The equation for the boundary :_2 is simply r = rm. Its intrinsic metric is

i dz_ = - 1 - -_p,r'_ dt[ + r2,,dn_ (13)

.!
The pressure field in region I is given by

P' 2 , Jh

p(r,t,) i3F(t,)_(l__ffp,r..) t (14)

| and, on the boundaries,

__ p_ = - p,uv, _ = 0 (15)

Region II.

. :,,,) {aRy
\°/

with R (r, tn) given implicitly b_

/,Nil" -'gp" 2 ,']-_ "- [1-,,(_),_(,01_ (17)t..= ¢(,) +-g,. _- ( , )_,.(x) [1- ¢(x)p 1- -ffp,x'

JPL SPACEPROGRAMSSUMMARY 37.44, VOL. IV 263

1967019812-274



and

(
- -_P'r_ 2 (u- v)

Ivl u(1 - v01/21-- -ffp,r_

�vz -- -ffp,r'-' 2 r2 i d v='- -_ p,rz-f-- v-; + -ffP_ P"-- +x ._ _rr i 2S_-7 /_1 dx (18)

The equations for the boundaries of region II are: for :L_,r = R, or, from Eq. (17),

[ )tH = - 2 _ dx (19)

u(x) [1- v'_(x)]l/21- _p_x_

giving Eq, (12) again for d_; and for _, r : r,_, so that

;, dY._= -dt_ + R "_(r., tn) df_2 (20)

4 or, again using Eq. (17),

: v_ r_ 2

: dz_ = - L 1 - v2, �-ffp" dR2 + R2df_2 (21)

The proper density in region II is given by

r_ [_R_ -_
p(r,t,,) : p._ \ _r/ (_')

i and, on 1_s,

u (1 - v') (23)
ox_= p, (u - v)

Region IlL

( ( ")-'_, ds_= - t - 2 dtt. + 1- 2_ dR,+ rVdw (24)

with
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The boundary equations for this region are: for Y_z,R = r,,, giving Eq. (13) for dE_ (with tx =tm on _..); and for _1,

1 - } - -ffp,r., 2 .,. 1 - 3 P" x J dx (26)

v 3 p,r v,, r:_ 2

t,,,:_-_ (17_ .... _ i'---_i. +3 0` X_l L

giving Eq. (21) again for dzi.

Certain constraints must be imposed on the parameters to shells of matter overtaking others (intersection of the
and velocities if these solutions are to be complete and world lines in region II), violating the assumption of
everywhere regular with no further boundaries. First, incoherent matter in region II.
to describe the situation of Fig. 7 rather than that of
Fig. 8(a), we must choose v (0) = 0. Second, to ensure that It may be noted from Eq. (10) that, in general, a dis-
0 _ p (r, t0 < o0, we must have continuity of the pressure in region I occurs at the surface

t_ = 0 (the dashed line of Fig. 7). Physically, this would

I ( 2 .,_'_ 1 appear as a shock wave of infinite speed, resulting from31 - -_p,r-) - 1 the sudden cessation of accretion at r = r_. The discon-

0_(-uv)< I(231- / 3o,r °-)'_] (27) tinuity is removed by setting u,, = 0, whiehcorresponds- simply to vanishing density at the outer boundary of the
collapsing cloud, as is evident from Eq. (23). Letting_t

From this, it follows that u (r) = 0 anywhere, however, gives rise to some difficulties
with the coordinate r in region II and on :_:_at such points.

2 8 These can be handled by using instead a new coordinate F,

i _ p,r., < _- (28) defined, for instance, by
which is the usual limit for the interior Schwarzschild solu- dF- (p_.:)-_dr

; tion. Next, from Eq. (22), we must have _R/_r > 0; thus,

| from the first lector of Eq. (18), For arbitrary choices of the functions u (r) and v (r), sat-

2 isfying the foregoing constraints and u,, = 0, the models

p,r-"_ v2< 1 (29) may still have the acausal feature that the surfaces of con-stant pressure in region I are spacelike. This is a result of
the incompressibility of the matter in region I and is not

The inequality on the left-hand side above may be re- surprising. For such fluids, in the words of Sommerfeld
written in an obvious notation as an energy constraint (Ref. 11), the pressure takes on the rather unphysical

character of a "Lagrangian multiplier.., a reaction against

_ __ the condition of incompressibility.., without energetic
1 v2 M (r)> 0 (30) consequence." Nevertheless, here its contribution to the2 r --

•_ gravitational field is fully included.

_. required to ensure that the matter of regDn II comes from

_ (or goes to) infinite distance. The second factor of Eq. (18)
must also be prevented from vanishing, which it might do if E. Pa_icular Solutions of a System of Nonlinear

First-Order Ordinary Differential Equations,

_r_ _ 2 2"1 J. S.Zmuidzinas

v -_ p,r / Let E_ be the Euclidean space of all p.veetors z =
J. -- _ '/ (31) (x*, • • ' , x_), - oo< x' < o0. Consider the system of p

ordinary differential equations

became stdBciently negative (all other terms of the factor
being positive). Such behavior of the energy on _s leads _' = X' (x) (1)

b
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where in deducing that

k'--_dx'/dt f,,..., = Vf,+]

and the x' are given functions of x = x (t). The parameter t = V(,_,akfk_,._,
is supposed to lie in the interval [0, c¢). It is assumed that

the x' are not explicit functions of t, i.e., that _X'/_t = O. = _ (Vak'fk + ak"XTfk)
h-.

Particular solutions of Eq. (1) can be obtained from the
knowledge of a set of invariant relations (IRs) defined = _ (Vak + ak-1 + anak)[_k:o

as follows: Let [o (x) be some function of the x' which is
differentiable a sufficient number of times. Introduce the

where a_, _0. Similar arguments establish our assertion
operator for all f,, with m > n + 2.

V _ X'_i = d/dt Starting with an arbitrary [,,, there need not exist a finite
integer n for which Eq. (2) is true. On the other hand,

• (1) (2)
where there may exist many different functions fo .fo • " " " for

which Eq. (2) holds, with various integers n"), n '_), • • • .
The ,c_,_with the smallest n (_)are of particular interest.

_ = _/_x'

: To illustrate the utility of IRs, consider the system
and put

_:= x-_+ _ (3)

f, (x) = V" _o(x), n = O, 1,2, • • • (/= 2xy (4)

Suppose it happens that each Ira,m > n, vanishes identi- Suppose we try
tally if we set fo(x) =/c (x) .... = [, (x) = 0. Then, we

say that the set {h(x)=0,k=0,1,2, '' • ,n} is a set fo(x,y)=x+y (5)
of IRs.

Then,

It is easy to find a characterization of an [, °�vanishing
when h (x) = 0, k = 0, • • • , n. It is sufficient to demand /c (x, y) = {(x z + y2)_,_+ 2xyav}fo(x, y)

that/t be linear in the h: = (x + y)2

= [h(x,y)p
_t

/.+, (x)= _ a, (x)h (x) (2)
=0 Thus, fo (x, y) -------x * y = 0 is an IR. Imposing fo = 0 on our

system of differential equations, we obtain
where the ak are some functions of x nonsingular at the
"point" 0¢o(x), • • • , f. (x)) = 0 (a variety in E,). If f..a is _ = _x=
given by Eq. (9.), then all f,, m > n + 1, are also of this
form. To see this, we use _)= -2y _

The solutions are elementary:
Vlk=h,., , k=0,1,9.,...,n-1

. x = ½(c - t)-_
= _ affz, It= n_.o y = -',t (c - t)"
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Here, c is at. arbitrary constant. These solutions are spe- We compute [1 = _Tf,, and eliminate x from f_ by means
cial cases of the more general solution obtained by adding of Eq. (9). The result is
equations for x and y:

[,=[do 3 + (a- e) a2 + ([- b) a + c]y2
/,,

- [2da '_+ (2a - e),_ - b] y[o

f,, _ x + y = (c - t)-' + (do + a)[2o (10)

We may use f,, = x + y :_ 0 to eliminate, say, y from In order that [1 = 0 when fo = 0, we must require that

Eq. (3), thus obtaining the coefficient of y2 vanish. This requirement yields the I_
following cabic equation for the parameter a:

= ex:- _o +/o_ (6)
da_+ (a - e),_" + (f - b)a + c = 0 (11)

Putting

The three solutions a,.:.3 of this equation yield the de-
x = fou sired /o's:

substituting into Eq. (6), and using jo = Po, we obtain [_,'_(x,y) = x + aiy, i= 1,2,3

" t_= [0(2uz - 3u + 1) (7) For the special case a = c = 1, b = d = [ = 0, and e'= g,
we find ,, = ± 1 and so

The solution of this equation follows by quadrature:
f_" = x + y

c' - _,/2= = x - y
It C' -- }¢o

Here, f_' is just Eq. (5), while [_2jleads to new particular

Thus, we have found, with the help of [1 = jo = fo2, the solutions.
family of solutions

While it is true that fo = 0 entails [I = 0, it is not
x = fou necessarily true that [,, = ]., (t) yields [1 independent of

y, unless the coe_cient of yfo in Eq. (10) happens to
y = fo - x = fo(1 - u) vanish. The necessary conditions for this coet_eient to

vanish are found to be

Let us now consider a more general system of equa-
tions, still homogeneous: ca2 + (b - 2_ a - 2c.= O, a _ 0

or

= ax2 + bw + cy"m X

b'-0, a=0
0 = &' + ex_ + _'_ Z (8)

In general, neither of these conditions will be sa_.

The homogeneity of X and Y suggests looking for ho-
mogeneous IRs. The simplest choice for fo is the I/near Let us now choose a homogeneous quadratic exprm-
expression s/on for _o:

to= •+ (9) to=(x+ (x+ (Is)

i,i
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Then, The homogeneity of the X i suggests the ansatz

t, = (x + ,,r)(x +/_y)+ (x + _y)(x +/3Y) x*:--,_'z_, (14)

If [0= 0, then either x + ,y =: 0 or x +/3y = 0. Suppose
the former is the case. Then, where a' and v are nonzero constants. Substituting this

into Eq. (13), we find

t, = IX + _r],_ _,,(/3- _)y
_=a i --Z ('- 1)' ¬�(nosum on i)

Jl" " J_ rot _

vanishes if/3 = a (the trivial case) or if

For consistency, we demand that the coefficient of
[X + aY],:_,,,, = 0 z ''-1)_ Œindependent of i:

But, in the latter case, a must satisfy Eq. (11), and so )tEa' aJ.... at" " ai" j"
we are back at the linear case already discussed. Since J,... i. va' J,"" J, var

Eq. (12) is symmetric in _ and /3, the same conclusion (15)
obtains if x +/3y = 0. We see then that choosing Eq. (12)
does not lead to new solutions. Obviously, the same is
true of higher-degree homogeneous polynomial expres- Then,

sions for fo. _ = --xz _'-'_ è�Our results for Eq. (8) may be generalized in several

ways. First, suppose we have the system Hence.

_=aoX" "-' Zy2 z(t) = [(n- 1)v(c+ M)] -'"'',-'_-' :/:1 t (16)-a,x y+a_x"- + • • • +(-)"a.y" , n
= c'e -xt , n = 1 )

(t = box" - b_x"-ay + bzx"-2y2 + . . . + (-)"b,y"

The n - 1 equations for the n - 1 ratios _ = aJ/a _, say,
Then, it is easy to show that are coupled algebraic of order n + 1 in the a's.

fo = x + ay = 0 Define the function

is an IR, prowMed a satisfies g (x) =.#_x I (17)

boa'_ |�"Jr(ao + b_)a" + (at + bz)a "-_ where the fit are so far arbitrary. With Eq. (14), this
becomes

+... + (a,_, + b,)a + a,, = 0

g =pz"

Next, we generalize our results to an arbitrary aumber
of variables x',t = 1,2, . • • ,p. We take as our system t, ma'pt

_i __al X h ' ' • XJ=amx I
h... _,. We altohave

(t,t_, ' • • ,it, = 1,o_, •.. ,p) (13) X' = i t = m'z"q_ .-=-vX=tz""
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Therefore, general class of solutions is obtained by taking p @ 0.
Then, f,, = pz_ or

Vg = 3,X' --

= - vxpz,_ B,x' (t) = f, [z (t)] v

= _ v)tz_-, _vg Suppose//j,-_ 0 (relabel if necessary). Then, we may solve
for x_ and eliminate it from our origina! system of

Clearly, g = 0 implies Vg = 0. Thus, we may identify Eq. (13) in favor of x', • • ' , x_'-' and the known fimc-
g with /,,: tion z, thus reducing the number of unknown functions

to p-1. Making the further substitution x _= zVy_,
f,,(x) =/3ix'= pzv i = 1,2,.'',p-1, we can cast these equations in a

form similar to Eq. (7), whi,-h may, in certain cases, be
Taking [,, = 0 means p =-0, since the other possibility amenable to solution or further reduction.
z _-0 is trivial. The [,, = 0 solutions are thus those with
xt = a_z_, where z is given by Eq. (16). The /3i are no Work ,on further generalizations to lrmhomogeneous
longer mbitrary, but constrained by v = a_Bi = 0. A more X' is in progress and will be reported later.

References

| I. Baker, E. B., Burd, L. W., and Root, G. N., Review of the Scientific Institute,
Vol. 34, p. 243, 1963.

2. King, J., Jr., and Benson, S. W., Journal of Chemical Physics, Vol. 44, 1007,
1966.

3. ttirschfelder, Curtis, and Bird, Molecular Theory of da_es and Liquids, John
Wiley and Sons, Inc., New York, 1954.

4. Littlewood, A. B., Gas Chromatography, Chap. 2, Academic Press, New York,
_- 1962.

._ 5. Courar:t, R., and Hilbert, D., Methods of Mathematical Physics, Vol. I, p. 157,
Interscience Publishers, New York, 1957.

6. Taub, A. H., Recent Developments in General Relativity, p. 449, Macmillan Co.,
. New York, 1962.

7. Lichnerowicz, A., Theories Relativtstes de la Gravitation et de gEle_tromag-
netisme, Masson et Cie., Par/s, 1955.

8. Oppenheimer, J. R., and Snyder, H., Physical Review, Vol. 56, p. 455, 1939.

:' 9. Estabrook, F. B., and Wahlquist, H. D., "Dyadic Analysis of Space-T/me Con-
gnlenees," Journal of Mathematical Physics, Vol. 5, p. 1629, 1964. -

l 10. Wahlquist, H. D., and Est,tbrook, F. B., "Rigid Motions in Einstein Space_,"
. ]oumal of Mathematical Physics, Vol, 7, p. 804, 1966; also published as Tech.

I nlcal Report 32-868, Jet Propulsion Laboratory, Pasadena, Calfforn/a, 1966,
11. Sommedeld, A., Mechanics of Deformab/e Bodbes, p. 91, Academic Press, Ira:.,

| New York, 1950.

JPL SPACEPROGRAMSSUMMA/IY 37.44, VOL. IV t69

|

m

1967019812-280


